
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

r --

NRL/FR/7240- -94-9449

Conversion of an Oceanographic Expert
System to a C-Based Language

SUSAN BRIDGES

LIANG-CHUN CHEN

Computer Science Department
Mississippi State University

Prepared for Remote Sensing Division

February 1,7 1995

Approved for public release; distribution unlimited.

1

I

I

:0

S

S

REPORT DOCUMENTATION PAGE Form Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
.. ** . -Send comments regarding this burden or any other aspect of this collection

. Directorate for information Operations and Reports, 1215 Jefferson Davis
A * w _ .- ___ ... , , ,. ff i vYork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1, 1995 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Conversion of an Oceanographic Expert System to a C-Based Language Job Order No. 572-5195-03
Program Element No. 0603704N

6. AUTHOR(S) Project No. X1598
Task No. 100

*Susan Bridges and Liang-Chun Chen Accession No. DN255042

Contract No. NAS 13-330

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Computer Science Department REPORT NUMBER
Mississippi State University NRL/FR/7240--94-9449

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command
2451 Crystal Drive
Arlington, VA 22202

11. SUPPLEMENTARY NOTES

*Prepared for Remote Sensing Applications Branch, Remote Sensing Division, Stennis Space Center, MS 39529-5004

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objectives of this project were to convert the NRL oceanographic expert system from the computer language OPS83 into

the C language and CLIPS (C Language Integrated Production System), to redesign the control structure and the user interface
and to improve the readability, understandability, and maintainability of the code. The eddy prediction component of an

oceanographic expert system that was originally implemented in OPS83 has been translated to the CLIPS expert system shell.

Portions of the system that were originally implemented in OPS83 procedural code have been translated to C. These

changes will allow the system to be incorporated into the Semi-Automated Mesoscale Analysis System 1.2 (SAMAS 1.2).

SAMAS 1.2 will eventually be incorporated in to the third generation of the Navy's Tactical Environmental Support System,
TESS(3), which does not support OPS83 code.

In addition to the translation tasks, the main control structure of the expert system was redesigned to achieve increased

modularity and thus to improve the understandability of the code. An explanation component that was recently added to the

system was also revised to improve maintainability. The revised and translated code was tested using several data sets that had

previously been used to test the original system. The functionality of the revised system was exactly the same as that of the
original system using all of the test data.

14. SUBJECT TERMS 15. NUMBER OF PAGES

data analysis, fronts and eddies, digital image analysis, remote sensing, satellite oceanography 35
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Same as report

NSN 7540-01-280-5500
i

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

S

0

0

0

CONTENTS

1.0 INTRODUCTION 1

2.0 SYSTEM REQUIREMENTS 2

2.1 Functional Requirements 2
2.2 Interface Requirements 3
2.3 Software Requirements . t.. .4
2.4 Hardware Platform .4
2.5 Performance Requirements .. 4

3.0 SYSTEM DESIGN.5

3.1 Interfaces with Other Components in SAMAS 1.2. .5
3.2 Structured Design of WATE .5
3.3 Design Considerations .7

4.0 TRANSLATION OF OPS83 TO CLIPS AND C .8

4.1 Working Memory Elements in OPS83 and Templates in CLIPS .9
4.2 Rules in OPS83 and CLIPS 0................. 10
4.3 Procedural Code in OPS83 and in C .12
4.4 Invoking the Rule System in OPS83 and in Embedded CLIPS .13

5.0 IMPLEMENTATION 13

5.1 Coding and Naming Conventions .13
5.2 Embedding CLIPS in C . 14
5.3 Running WATE . 16
5.4 Initialization Component .16
5.5 Get User Options Module .17
5.6 Eddy Component . 18
5.7 Explanation Component I 20
5.8 Final Output Component .21

6.0 SYSTEM TESTING .22

6.1 Testing Criteria .22
6.2 Test Cases .22
6.3 Test Results .22

iii

7.0 EVALUATION AND CONCLUSIONS .. 22

8.0 ACKNOWLEDGMENTS .. 23

9.0 REFERENCES .. 23

APPENDIX A - Format of Input Files ... 25

APPENDIX B - Test Cases ... 27

APPENDIX C - Test Results ... 31

APPENDIX D - Description of Files Containing Source Code 33

iv

CONVERSION OF AN OCEANOGRAPHIC EXPERT SYSTEM
TO A C-BASED LANGUAGE

1.0 INTRODUCTION

The Naval Research Laboratory (NRL) has developed an oceanographic expert system that
describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic
Ocean (Thomason and Blake 1986). These features include the Gulf Stream current and the warm-
and cold-core eddies associated with the Gulf Stream. An explanation capability, which was recently
added to the eddy prediction component of the expert system, allows the system to justify the
reasoning process it uses to provide predictions (Bridges and Lybanon 1993). The oceanographic
expert system main program was implemented in the C language; the expert system rules were
written in OPS83, and some graphics routines were implemented in Fortran.

The oceanographic expert system contains two major components: one predicts movement of
the Gulf Stream, the other predicts movement of the eddies. Both were originally implemented in
C and OPS83. The Gulf Stream component has been rewritten by NRL, and predictions are cur-
rently computed by a neural network system written in C code (Peckinpaugh 1993). The project
described in this report is primarily concerned with the component that predicts eddy movement
(referred to hereafter as the Expert System). The main purpose of this project was to convert the
Expert System from OPS83 to C and CLIPS (C Language Integrated Production System). This
conversion will allow the system to be incorporated into the Semi-Automated Mesoscale Analysis
System 1.2, SAMAS 1.2 (Peckinpaugh 1993). SAMAS 1.2 will be eventually embedded into the
third generation of the Navy's Tactical Environmental Support System TESS(3) (Lybanon 1992),
which does not support OPS83 code. CLIPS is an expert system tool developed by the National
Aeronautics and Space Administration that has been approved for use in TESS(3). In addition to
the conversion task, the Expert System's capability to be read, understood, and maintained also
needed to be improved. It was also necessary to modify interfaces with other components of
SAMAS 1.2 during the conversion process.

This project had three major objectives. First, the rule system of the Expert System needed to
be converted into CLIPS to facilitate the incorporation of SAMAS 1.2 into TESS(3). SAMAS 1.2
has been developed by NRL to automate the analysis and interpretation of satellite infrared images
in the Gulf Stream region of the northwest Atlantic Ocean. The Expert System is used to predict
eddy movement when the target area is obscured by clouds. TESS(3) a system currently under
development, intended for use on ships and in some land-based facilities, will provide information
about the Gulf Stream and the associated eddies.

Second, much of the interface and control structure of the Expert System was implemented in
OPS83 procedural code and needed to be rewritten in a language suitable for TESS(3). In addition,
the structure and quality of the code had deteriorated with many years of maintenance by several

1

0
2 Bridges and Chen

different groups. The code included many obsolete variables and statements that had originally been
used for debugging. The lack of comment statements and coding conventions made the source code
very difficult to read. The control structure of the Expert System needed to be redesigned to
modularize the functions provided by the Expert System. One module often contained more than
one function and the flow of control among modules was convoluted. The control structure was
redesigned so that each module performs one function with the goal of improving the understand-
ability and the maintenance of the code. Also, the user interface that provides the user with different
options for running the Expert System was improved by implementing a window-based interface.

Third, the explanation module of the Expert System needed to be implemented in a more
flexible manner. The module that generated the explanations was hard-coded in C. Each prediction
rule of the Expert System had an associated procedure that saved designated values to an array of
linked lists each time the rule fired. When explanations were requested, the content of the explanation
was constructed based on pre-stored text with certain slots that could be filled with corresponding
values stored in the linked lists. This construction meant that every time a rule was changed, added,
or deleted the corresponding C procedure also must be changed, all of which made the explanation
system difficult to maintain. The goal was to implement the explanation system using the
rule-based paradigm. In other words, to make the explanation system easier to understand and
update, meta-rules (rules about rules) were used to reason about the rules that fire when a prediction
is made.

The overall objectives of the project were to convert the Expert System from OPS83 into C and
CLIPS, to redesign the control structure and the user interface, and to improve the readability,
understandability, and maintainability of the code. The converted system developed in this project
has been named WATE 1.0 (an acronym for Where Are Those Eddies). The deliverables of
this project include the WATE system and the written documentation of the system design,
implementation, and test results.

2.0 SYSTEM REQUIREMENTS

WATE is a revision of an existing system. The general requirements of WATE were (1) that
it produce the same prediction output as the OPS83 version of the Expert System when given the
same input data, (2) that it be able to run as a stand-alone system or integrated with other compo-
nents of SAMAS 1.2, and (3) that the readability, understandability, and maintainability of the
system be improved by removing obsolete variables and statements, modularizing the system, and
making the explanation system more adaptable to future enhancements. In addition, WATE had the
following functional requirements, interface requirements, and software and hardware requirements.

2.1 Functional Requirements

2.1.1 Input

The system is required to read the following four input files (file format specifications are
given in Appendix A.)

* Upper Gulf Stream (UGS) data file. The system must be able to read the file that describes
a Gulf Stream north wall. If the north wall data is not provided, then default values for the north
wall will be used (called the nominal north wall).

* Eddy data file. The system must be able to read the file that describes the position and size
of both warm-core rings (WCR) and cold-core rings (CCR) in the northwest Atlantic Ocean.

Conversion of an Oceanographic Expert System to a C-Based Language

* Parameter file. The system must be able to read the file that describes parameters for both
WCRs and CCRs. In each region (nine regions are defined in the study area), parameters are
specified for each of 16 compass directions. The WCR parameters are given as latitude and lon-
gitude adjustment factors, and the CCR parameters are given as heading and final direction values.

* Region file. The system must be able to read the file that describes default values, such as
speed, direction, heading, minimum radius, and so on, for each region.

2.1.2 Output

WATE must be able to correctly generate the following outputs:

* General output. WATE must be able to store the general output into a set of external files
specified by the user. The general output must contain the final predicted positions of the north and
south walls, as well as the eddies. Gulf Stream positions will be followed by a source code of "O."
Eddy positions will be followed by a source code of "ES." For example, a line of the north wall
output file is as follows:

34.9707 -75.0016 0.

A line of the eddy output file is as folloWs:

34.9039 -72.9087 55.3934 C ES,

where "C" indicates CCR. A more detailed description of the general output can be found in
Peckinpaugh (1993).

* Rule trace. WATE must be able to generate a natural language translation of the sequence of
rules that have been activated during every prediction cycle (Bridges and Lybanon 1993).

* Explanation of results. WATE must be able to generate natural language summaries that
describe how the system made a prediction and that are of at least the same level of sophistication
as those produced by the Expert System (Bridges and Lybanon 1993).

* Graphical display. WATE must be able to interface with the current graphics routines that
display the status of the Gulf Stream and eddies at each time step (Peckinpaugh 1993).

2.2 Interface Requirements

2.2.1 User Interface

When WATE is invoked either from SAMAS (integrated mode) or by entering the executable
name at the UNIX prompt (stand-alone mode), the user should be given the following options:

* Options for the PV-Wave graphic display. If the PV-Wave option is selected, the user
should be provided the following additional options: (1) displaying eddies with or without
trails, (2) displaying the Gulf Stream with or without keeping previous Gulf Stream drawings, and
(3) displaying grids and/or regions.

* Options for selecting UGS data file and eddy data file.

* Options for the number of days in each time step.

3

0
4 Bridges and Chen

During the session, the user should be able to control the prediction cycle and should be given
the option of quitting after each time step. When quit is selected, the user should have the option
of seeing explanations for each input eddy or for all eddies. Explanations for all eddies during the
prediction cycles should be stored in a file named explan.dat. The type of explanation should be
either rule trace or summary. The user should be able to quit the explanation session.

After the user leaves the explanation session, an option for saving the predicted final status of
the Gulf Stream north wall, Gulf Stream south wall, and eddies with active status to external files
should be allowed.

2.2.2 External Interface

WATE should interface with the following components in SAMAS 1.2 (Fig. 1):

* User Interface Module - including the Expert System driver and the PV-Wave Display Module.

* Geometry Routines.

* Gulf Stream Prediction Module.

2.3 Software Requirements

WATE should be written in CLIPS 5.1 and the K&R (after Kernighan and Ritchie 1978)
C language.

2.4 Hardware Platform

WATE must run on a Sun Sparc Station.

2.5 Performance Requirements

Performance is not a critical requirement of WATE, but the system should not be noticeably
slower than the current system.

User Interface

f 1 1 f .~~~~~~~~~~~

Fig. 1 -Interfaces of WATE and external components

Conversion of an Oceanographic Expert System to a C-Based Language 5

3.0 SYSTEM DESIGN

The main goals of the design phase were that the resulting system should be reimplemented in
CLIPS and be more readable, understandable, and maintainable. Therefore, the general approaches
were to modularize the Expert System, to simplify the control structure, and to define the module
interfaces.

3.1 Interfaces with Other Components in SAMAS 1.2

The control structure of the Expert Systern was written in OPS83. The interface of the Expert
System with other components in SAMAS 1.2 was implemented by calling C routines associated
with each external module. Although the WATE design required that the control structure written
in OPS83 code be converted to C code, the interfaces of WATE with other SAMAS components
could be implemented by retaining the original C routine calls.

3.2 Structured Design of WATE

WATE contains four main components as shown in the structure chart in Fig. 2:

* Initialization Component, containing five modules: Init Globals, Get User Options, Setup
CLIPS, Setup PV Wave, and Setup GS (Gulf Stream).

* Eddy Component.

* Explanation Component, containing two modules: Explanation Driver and Presentation Module.

* Final Output Component.

3.2.1 Module Specifications

Each module of WATE is specified in terms of its interface, its abstract behavior, and its
submodules. WATE first invokes the Initialization Component, which contains the following modules.
The modules are invoked in the order in which they are listed.

* Init Globals is invoked by the main module. Its function is to initialize global variables that
are related to the prediction process. After it finishes its work, control is returned to the main
module.

* Get User Options is invoked by the main module. This module provides the user with options
specified in the Interface Requirements section of the System Requirements. Control is returned to
the main module.

* Setup CLIPS is invoked by the main module. It sets up an appropriate environment for the
Eddy Component based on the user options obtained by the Get User Options module. This module
contains four submodules:

-Init CLIPS initializes the CLIPS system.

-Load Constructs loads the knowledge structures (discussed in the next section), eddy
movement rules, and explanation rules.

-Reset CLIPS resets the CLIPS system, making loaded facts and rules active to the CLIPS
inference engine.

Bridges and Chen

)ptions

ns

0

al
put
mnent

tation

Ule

0

Fig. 2-Structure chart of WATE

6

Conversion of an Oceanographic Expert System to a C-Based Language 7

-Read Input reads in parameters, region data, and eddy data. Modules, including Init CLIPS,
Load Constructs, and Reset CLIPS, will be discussed in detail in the next section.

* Setup PV Wave is invoked by the main module. Based on the selected PV-Wave options, this
module interfaces with external PV-Wave display routines in SAMAS 1.2.

* Setup GS is invoked by the main module. This module uses a default value for the width of
the Gulf Stream and the user-specified UGS data file to build up a Gulf Stream south wall. It then
returns the control over to the main module.

After initialization is complete, control passes to the Eddy Component, which controls the
prediction of eddy movement. The Eddy Component interfaces with CLIPS, and the prediction is
done by a rule system written in CLIPS. As the rules fire, the reasoning process of the rule system
is recorded as a set of CLIPS facts. During the prediction session, the user can ask for a prediction
for the next time step or quit the prediction session. After the user quits the prediction session,
control is returned to the main module.

The main module can invoke the Explanation Component if the user requests an explanation.
The Explanation Component of WATE contains two modules:

* Explanation Driver displays an explanation menu and asserts appropriate facts to CLIPS
based on the user's selection of explanation preference.

* Presentation Module contains explanation rules and uses them to construct an explanation of
the reasoning process of the Eddy Component.

The Explanation Component will be discussed in more detail in the next section. After the user
quits the explanation session, control returns to the main module.

The main module then invokes the Final Output Component. The Final Output Component
prompts the user for options for saving the north wall, the south wall, and eddy positions to external
files. Then control returns to the main module, which either terminates WATE (in integrated mode)
or again invokes the Get User Options module (in stand-alone mode).

3.3 Design Considerations

Several issues were considered in the redesign of the system. First, the rule system of the Eddy
Component needed to be reimplemented in CLIPS. This process required that the interfaces between
the rule system of the Eddy Component and its external modules be modified to incorporate the
external C routines and the CLIPS rules.

Second, the control structure of the Expert System needed to be redesigned to modularize the
system and make it more understandable. The original Expert System was not well modularized in
the sense of one module performing one function.

Finally, the Explanation Component of WATE was reimplemented in a declarative form to
make maintenance of the explanation system easier. The tasks performed by the Explanation Com-
ponent of the original Expert System were implicitly (or procedurally) implemented in C routines.
These included routines for recording activation of the agenda, storing variable names and their
values, and displaying the pre-stored templates with slots filled by appropriate values. Most of
these routines required extensive revision to interact with the CLIPS inference engine instead of the
OPS inference engine. All of these made the explanation system hard to maintain.

Bridges and Chen

The Eddy Component of WATE records the reasoning process of the rule system as a set of
CLIPS facts asserted in working memory rather than using external C routines to store int infor-
mation in complex lists. Figure 3 illustrates the interface of the Explanation Component of WATE
with CLIPS. The Explanation Driver prompts the user for the type of explanation to be generated
(rule trace or summary and the decision to be explained). This information is used by the Expla-
nation Driver to assert facts into CLIPS that describe the type of explanation to be generated. The
explanation rules use both the CLIPS facts that recorded during the reasoning process of the Eddy
Component and the CLIPS facts that were asserted by the Explanation Driver to construct the
appropriate explanation. The Explanation Component in the new system is more independent of the
Eddy Component because the reasoning process does not need to be recorded by separate proce-
dures as it was in the original Expert System. This simplification enhances the understandability
and maintainability of the explanation system.

4.0 TRANSLATION OF OPS83 TO CLIPS AND C

Both OPS83 and CLIPS support the rule-based paradigm. A rule-based system has three basic
components:

* Working memory -contains a set of facts

* Knowledge base - contains a set of rules

* Inference engine - is responsible for the reasoning based on the facts and rules.

Fig. 3 - Interface of WATE's Explanation Component and CLIPS

8

Conversion of an Oceanographic Expert System to a C-Based Language

An overview of the process for translating OPS83 code to CLIPS and C is discussed in this
section. The OPS83 users manual (Forgy 1986) gives a detailed description of the language's
functionality. Because both OPS83 and CLIPS are descendants of the OPS production language and
both are forward-chaining expert system shells, the mapping from OPS83 to CLIPS was fairly
straightforward.

4.1 Worldng Memory Elements in OPS83 and Templates in CLIPS

Both OPS83 and CLIPS support frame-like data structures called working memory elements
(WME) and templates, respectively. A fact in OPS83's working memory is also called a WME.
Fields in a WME and fields in a template correspond to slots in a frame. CLIPS permits a template
to have only one field with multiple values. An example of an OPS83 WME named goal from the
Expert System is given below:

type goal = element

(ringtype: symbol;

time: integer;

refno: integer;

reg: integer;);

A corresponding template in WATE is defined as follows:

(deftemplate goal

(field ringtype

(allowed-symbols no wcr ccr))

(field time

(type INTEGER))

(field refno

(type INTEGER))

(field reg

(type INTEGER)))

where the type definition of ringtype indicates that the type of its value is symbol, and the allowed
values that can be assigned to this field are wcr and ccr. Although the format of the structure's
definitions are different, the translation of WMEs in OPS83 to templates in CLIPS is straightforward.

In addition, WMEs (facts) are uniquely numbered by OPS83 in its working memory, and each
WME can be accessed by its index number. Thus, a count of the total number of facts in working
memory is accessible in OPS83. In CLIPS, such facts as template facts are associated with unique
generic pointers. The accessing mechanism for CLIPS facts in the fact list will be discussed in the
section that describes implementation.

9

0
10 Bridges and Chen

4.2 Rules in OPS83 and CLIPS

Rules in CLIPS and OPS83 have similar formats. Rules in both languages have a left-hand side
(LHS) and a right-hand side (RHS). The LHS and RHS are separated by "-->" in OPS83 or by "=>"
in CLIPS. The format of an OPS83 rule is as follows:

rule <rule-name>

<LHS>

<RHS>

In CLIPS, the rule format is as follows:

(defrule <rule-name>

<LHS>

<RHS>

In both OPS83 and CLIPS, the LHS is a sequence of patterns and the RHS is a sequence of actions.
A rule in OPS83 or in CLIPS can be read as follows: if all patterns on the LHS of the rule match
facts in working memory, then execute the actions on the RHS of the rule.

The main difference in rules in the two languages is in the use of variables. In OPS83, a WME
is bound to a pointer variable on the LHS. If the value of any field of the WME is used thereafter,
it can be referenced in a manner similar to the way a field in a record is referenced in C or Pascal.
For example, a portion of a rule in OPS83 might be as follows:

rule CheckDissipation

{

&goal (goal);

® (region

ringtype = &goal.ringtype;

reg = &goal.reg;);

0

0

a

9

e

0

.

where region is a WME, and ringtype and reg are two of its fields. Symbols preceded by "&"
indicate pointer variables. In the above example, the fields ringtype and reg of the goal template
do not need to be specified in the goal template pattern in order to be bound to appropriate values.

0

Conversion of an Oceanographic Expert System to a C-Based Language

In CLIPS, however, the variable corresponding to a CLIPS fact must be bound to a value
during the pattern-matching phase before it is used as a bound variable. The rule below is a CLIPS
version of the previous rule where region' is where region is a template structure. Symbols preceded
by "?" indicate variables.

(defrule CheckDissipation

(goal

(ringtype ?g-rtype)

(reg ?g-reg))

(region

(ringtype ?g-rtype)

(reg ?g-reg))

Another difference is the use of variables on the RHS of a rule. In OPS83, new variables used
on the RHS must be defined before they are used. In CLIPS, new variables used on the RHS are
implicitly declared in some types of statements, such as the bind statement. For example, a portion
of a rule in OPS83 might be as follows:

rule CheckCoalescence

{

&mring (moved-ring);

local &LAT: real,

&LONG: real;

&LAT = &mring.modlat;

&LONG = &mring.modlong;

In CLIPS, the corresponding rule would be written as follows:

(defrule CheckCoalescence

(moved-ring

(modlat ?m-modlat)

11

0
12 Bridges and Chen

(modlong ?m-modlong)

.

(bind ?LAT ?m-modlat)

(bind ?LONG ?m-modlong)

0

where moved-ring is a WME in OPS83 and a template in CLIPS. The translation of rules in OPS83
to rules in CLIPS is straightforward.

4.3 Procedural Code in OPS83 and in C

OPS83 also supports a procedural language in addition to the rule-based constructs. In fact, the
format of its procedural language is similar to a combination of Pascal and C. For example, a
portion of a function written in OPS83 has the following format:

function foo (&x: out integer, &y: symbol): integer

{

local &a:

0

integer;

&a = &a + 1;

&x = &a + &y;

return(&i);

}; 0

where the parameter &x is passed by address and &y is passed by value. A procedure written in
OPS83 has a similar format except for the heading. For example, a procedure heading might have
the following format:

procedure foo (&x: out integer, &y: symbol)

{

0
Prototype declarations are similar to those in C. For example, a prototype definition in OPS83

has the following format:

external procedure foo(&x: out integer, &y: symbol);

One final comment about OPS83 and C is that the indices of array elements start with 1 in
OPS83, but start with 0 in C. Again, the translation of procedural code in OPS83 to that in C can
be done in a straightforward manner.

a

0

Conversion of an Oceanographic Expert Systeth to a C-Based Language

4.4 Invoking the Rule System in OPS83 and in Embedded CLIPS

In OPS83, a recognize-act (RA) cycle is responsible for processing the rules. The user must
write OPS83 code to implement the RA cycle. A rule is said to be "instantiated" when the patterns
on its LHS are matched against a set of WMEs. This match is the recognition part of the RA cycle.
OPS83 maintains a conflict set that is a set of all the instantiations that exist at a given time during
the execution of a rule system. A conflict resolution routine is used to select one rule instantiation
from the conflict set. This recognized instantiation can then be executed by employing the fire
statement. The conflict set is updated after each rule firing. The user-written RA cycle should
continue to loop until all instantiations have fired.

In CLIPS, the RA cycle is part of the predefined inference engine. An embedded CLIPS
program is usually run by using the following sequence of procedure calls from C:

InitializeCLIPS();

LoadConstructs(<fileName>);

ResetCLIPS();

RunCLIPS(n);

The InitializeCLIPS() function must be called prior to any other CLIPS function call and should
be called only one time. The LoadConstructs(<fileName>) function loads facts and rules from a
file. Its argument is a string that represents the name of a file. The ResetCLIPS() statement causes
the facts to be asserted into working memory and initiates pattern matching. After CLIPS has been
initialized and reset, each rule instantiation will be on the CLIPS agenda, and the RunCLIPS(n)
statement can then the used to execute n instantiations on the agenda. If n is negative,
RunCLIPS(n) executes all instantiations on the agenda until the agenda is empty. Unlike OPS83,
CLIPS has its own predefined conflict resolution routines, which can be selected by the user. The
sequence of instantiation execution is based on the selected conflict resolution strategy.

5.0 IMPLEMENTATION

This section discusses issues that were addressed during the implementation phase. The general
approach was first to modularize the system and then to convert the system modules from OPS83
to C and CLIPS. Finally, the Explanation Component was reimplemented in a more declarative
form. The basic logic of the Expert System was not changed. During discussion with Matthew
Lybanon and Sarah Peckinpaugh of NRL, obsolete variables and statements were identified. Vari-
ables were declared in the new code on an as-needed basis. The source code of WATE was
delivered in electronic form.

5.1 Coding and Naming Conventions

5.1.1 C Code

The following coding and naming conventions apply to C code and to CLIPS:

* Constant Declaration - constant names are declared with all capitalized letters.

* Type Declaration - type names are declared with only the first letter capitalized.

13

14 Bridges and Chen

* Variable Declaration - variable names are declared with lower case letters except for the
file-name variables and the rule-name variables, which are declared with all capitalized letters. If
a composite word is desired, then the variable name is named as a combination of two or more
words without hyphens, e.g., stepdays.

* Function Declaration - functions defined in WATE are named with the first letter of each
word capitalized.

* Global Variable - global variables are declared in the globals.h and explan.h files.

* Prototype Declaration - prototypes of user-defined functions called from the CLIPS environment
are declared in the globals.h file.

* Comment Statements - each file contains introductory comment statements that describe the
content and the purpose of that file. The functions provided by each routine are described as well.
The location of each external routine is also described for each prototype declaration.

5.1.2 CLIPS Code

* Rule Naming - rules should be named as meaningfully as possible. For example, names like
rulel should be avoided. Use CCREstimateMotion instead.

* User-Defined Function Naming - user-defined functions should be named in a meaningful
manner with lower case letters, e.g., get-input.

* Comment Statements - each construct in CLIPS, including deffacts, deftemplate, and defrule,
should have a comment, giving its purpose and properties.

5.2 Embedding CLIPS in C

The rule systems of both the Eddy Component and the Explanation Component are imple-
mented in CLIPS. This section discusses several general issues regarding embedding CLIPS in C,
but the CLIPS manual (Giarrantano 1990) should be consulted for more details.

5.2.1 CLIPS Library

When external functions defined by CLIPS are used (to be called from either C or CLIPS), the
header file clips.h must be included in the declaration section.

5.2.2 User-Defined Functions

An external function (written in C) can be defined and employed in CLIPS as an ordinary
CLIPS function. A CLIPS function DefineFunction statement must be used to define the function
name used in the CLIPS environment, the data type returned by the function, and the link to the
external function. For example, a C function named GetLcntgs that returns the value of a global
integer C variable 1cntgs is given below. The function will be accessed in CLIPS using the name
get-lcntgs.

DefineFunction("get-lcntgs", 'i', GetLcntgs, "GetLcntgs");

int GetLcntgso

{

0

Conversion of an Oceanographic Expert System to a C-Based Language

return(lcntgs);

The first argument, get-lcntgs, is the name of the function that can be used in CLIPS as a generic
function. The second argument, i, indicates that this function returns an integer. The third argument
defines the link between CLIPS and this function. The last argument specifies the actual function
name defined in the external routine. The third and fourth arguments are not necessarily the same.
The declarations of all user-defined functions employed in WATE are defined in the wate-stubs.c
file. All of the user-defined functions are defined in the returns.c file except the geometry routines,
which are defined in mathe.c, and the routines used to access region information, which are defined
in region.c.

5.2.2.1 Parameters Passed by Value from CLIPS to C

Parameters can be passed by value from CLIPS to user-defined functions. However, the passed
values must be transformed to the appropriate data type by employing functions, such as RtnLong(n),
RtnDouble(n), and RtnString(n), where n indicates the position of the parameter in the parameter
list. For example, a user-defined function that returns the value of the nth element of an array could
be declared in a DefineFunction statement and defined as follows:

DefineFunction("get-gsdist-value", 'd' ,GetGSdistValue,"GetGSdistValue");

double GetGSdistValue()

{

int index;

index = (int) RtnLong(1);

return(gsdist[index]);

where gsdist is a global variable of array of double type. Note that this function will be invoked
from CLIPS with one argument (the index of the element to be retrieved) even though the C
function has no arguments. CLIPS provides error-checking routines that can be called from the
C function to make sure that the function has been invoked with the correct number and type of
arguments.

5.2.2.2 Accessing CLIPS Facts from External Functions

CLIPS facts can be accessed by external functions via pointers. For example, function
GetNextFact(ptr) returns a generic pointer (ptr) pointing to one of the following: (1) the first fact
of the fact list if the value of ptr is NULL, (2) the fact following the fact pointed to by ptr if ptr
is pointing to a fact of the fact list, or (3) NULL if ptr is pointing to the last fact of the fact list.

The function GetMFValue(ptr, n) returns a generic pointer pointing to the value located at the
nth position of a multifield fact pointed to by ptr. Please note that if a template fact is accessed,
the sequence of the fields defined in the deftemplate construct (deftemplate will be discussed in the
next section) determines the position indicated by n. Therefore, if a modification is made in the
template definitions in terms of the sequence of fields, all the values returned by the GetMFValue
function will be influenced. Currently, the GetMFValue function has been employed in the eddies.c
and final-output.c files.

15

Bridges and Chen

The functions ValueToLong(ptr), ValueToDouble(ptr), and ValueToString(ptr), return values of
type long, double, and string pointer, respectively. These functions were used extensively to access
CLIPS facts from external functions. The following example uses functions mentioned above to
search through the CLIPS fact list and locate a goal template fact.

factptr = GetNextFact(NULL);

fact = ValueToString(GetMFValue(factptr, 1))

while (strcmp(fact, "goal") != 0)

factptr = GetNextFact(factptr);

fact = ValueToString(GetMFValue(factptr, 1));

After the above statements have been executed, the value of each field defined in the goal template
can also be obtained. For example, the following statement can be used to return the value of the
field named refno as an integer type:

(int) ValueToLong(GetMFValue(factptr, 4)).

5.3 Running WATE

WATE supports two running modes: integrated mode and stand-alone mode. The default run-
ning mode is integrated mode unless the user explicitly types in wate -w at the command line. The
integrated mode of WATE is invoked from the SAMAS menu.

5.4 Initialization Component

The Initialization Component sets up the environment for CLIPS, PV Wave, and the Gulf
Stream prediction system. This component invokes the following modules: Init Globals, Get User
Options, Setup CLIPS, Setup PV Wave, and Setup GS. The Init Globals module initializes the
following global variables:

* stepdays -the number of days in a time step (currently initialized to seven).

* cyclim - the limit of the number of the prediction cycles (currently set to 100).

* gswidth - the default distance between the GS north and south walls (currently set to 100.0).

* ugsray, Igsray, and mgsray - arrays of upper (north), lower (south), and middle GS points
(currently all of the array elements are initialized to 0.0).

The Get User Options module will be discussed in the next section. The Setup CLIPS module
invokes the following submodules:

* Init CLIPS - performs initialization of CLIPS.

*Load Constructs -loads prediction rules stored in the wcrrules.clp and ccrrules.clp files,
and explanation rules stored in the explain.clp file.

* Reset CLIPS - resets the CLIPS environment.

16

Conversion of an Oceanographic Expert Systenr to a C-Based Language

* Read Input - reads data from the parameter file, region data file, and eddy data file.

The Setup PV Wave module interface; with an external PV-Wave display module by calling the
following routines:

InitWave() -defined in mapping.c file.

ExpertMap() -defined in mapping.c file.

DrawGS() -defined in mapping.c file.

wavewait() -defined in mapping.c file.

The functionality of the above routines is described in Peckinpaugh (1993).

The Setup GS module interfaces with the external Gulf Stream prediction module, in which the
Gulf Stream north and south walls are formed by calling the following external routines:

Modeslnit() -defined in modes.c file.

CreateSW(-defined in modes.c file.

ReformGS() -defined in modes.c file.

ReadGS() -defined in modes.c file.

GSfillEnds() -defined in modes~c file.

fillGS2() - defined in mathe.c file.

nomGS2() -defined in mathe. c ile.

normalize(- defined in nrmlz.d file.

The functionality of each routine in the Galf Stream Prediction Module is described in Peckinpaugh
(1993).

5.5 Get User Options Module

The Get User Options Module has tm o versions. If WATE is running in stand-alone mode, the
User Options Window (see Fig. 4) will be displayed, including the choice of using PV Wave to
interpolate the predictions, the UGS data| file, the eddy data file, and the number of days for each
prediction cycle. If PV Wave is chosen,i the user can further decide how to draw the images of
rings, the Gulf Stream, and the map area (with or without grids and/or region limits). Although the
user can still select drawing preferences, if the NO for PV Wave option is selected by the user (or
by default), the selections for the drawing preferences will be ignored by WATE.

The User Options Window has an error detection facility if the UGS data file and/or eddy data
file either is not given or cannot be opened. Users will be notified by an error message when they
try to start the prediction by clicking the OK button if one of these errors exists.

The default value of the UGS data file is nominal. The default number of days for each step
of prediction is seven. Clicking on the Help button invokes a pop-up window with help text for the
User Options Window. The Quit button provides a way to quit the WATE system.

17

18 Bridges and Chen

Fig. 4-The User Options Window

If WATE is running in integrated mode from SAMAS 1.2, all the options are presented through
a command line interface.

5.6 Eddy Component

The main module of the Eddy Component is implemented in C, and its rule system is imple-
mented in CLIPS. An outer loop in the main module controls the reasoning process of the rule
system based on a time-step. The outer loop contains two inner loops for processing WCRs and
CCRs. The following pseudocode illustrates the control of the prediction process:

quit <- false

time <- 0

repeat (outer loop)

for region <- 1 to 9 do (WCR inner loop)

assert template fact goal for wcr

RunCLIPS(-1)

for region <- 1 to 9 do (CCR inner loop)

assert template fact goal for ccr

RunCLIPS(-1)

time <- time + time step

until the number of prediction cycles reaches limit or user enters quit.

WATE 1.0 User Options Window

0

Please select and enter your choices.

Use PV Wave: No | Yes
if yes

Draw rings with ring trails Draw rings without ring trails I Do not draw rings

Draw CS and keep previous GS drawings IDraw CS and erase previous GS drawings Do not draw GS

Draw grids only I Draw regions only I Do not draw grids or regions

UGS Data File: nominal

Eddy Data File:

Updating by day steps of 7 1 30

0

Conversion of an Oceanographic Expert System to a C-Based Language

At the first iteration of the WCR inner loop, the following goal template is asserted into CLIPS to
cause instantiation of appropriate rules at time frame of 0 in region 1:

(goal (ringtype wcr)

(time 0)

(refno 0)

(reg 1)).

The rule system begins to reason about WCRs that have the time stamp of 0 and are located in
region 1. A refno value of 0 is used to indicate that no ring has been selected for processing. In
the CCR loop, the same logic is applied with the ringtype field set to ccr. Within each inner loop,
the statement RunCLIPS(-1) causes all instantiations to execute.

The knowledge structure of the rule system of the Eddy Component is defined by four tem-
plates: the goal template: the ring template, the region template, and the moved-ring template. The
original rules of the Expert System were readily converted from OPS83 to CLIPS with a few
modifications of the patterns on the LHS and of the external function calls on the RHS. In addition,
actions were added at the end of the RI-S of each prediction rule to record the rule firing and
values of key variables as CLIPS facts, This part of each rule is purely for explanation. For
example, one of the WCR prediction rules is as follows:

(defrule WCRStrongInteraction ;;Is the WCR-GS interaction strong?

(goal

(ringtype wcr)

(reg ?g-reg)

(refno ?g-refno)

(time ?g-time))

(region

(ringtype wcr)

(reg ?g-reg)

(bkptl ?bkl))

?m <- (moved-ring

(ringtype wcr)

(reg ?g-reg)

(inter nil)

(ratio ?m-ratio&:(> ?m-ratio ?bkl)))

?rfr <- (rule-fire-record

(ringtype wcr)

(refno ?g-refno)

(time ?g-time)

(rules-fired $?rules))

19

Bridges and Chen

(modify ?m (regime 1)

(inter strong))

;;below is for explanation only

(modify ?rfr (rules-fired $?rules WCRStronglnteraction))

(assert (values-for-explanation

(rule-name WCRStrongInteraction)

(ringtype wcr)

(refno ?g-refno)

(time ?g-time)

(var-val bkptl ?bkl))))

The templates rule-fire-record and values-for-explanation will be discussed in the next section.

The Eddy Component accesses Gulf Stream data structures by calling the following routines:

ModeGS-move() - defined in modes.c

CreateSW() -defined in modes.c

GSfillEnds() -defined in modes.c

The PV-Wave display module is accessed by calling the following routines:

Refresh() -defined in mapping.c
DrawEddy() -defined in mapping.c
EraseEddy0 -defined in mapping.c
DrawGS() -defined in mappingc

The rule system of the Eddy Component interfaces with external Geometry Routines by the
following user-defined CLIPS functions:

* PreRtoGS2O - works as an interface between the rule system and the external routine RtoGS2O
that is defined in mathe.c.

* Prenringstep(- works as an interface between the rule system and the external routine
ringstepo that is defined in mathe.c.

* Preadjustringstep() - works as an interface between the rule system and the external routine
adjustringstepo defined in mathe.c.

All of the user-defined CLIPS functions are defined in returns.c.

5.7 Explanation Component

The Explanation Component contains two main modules, the Explanation Driver and the
Presentation Module. The Explanation Driver is implemented in C, and the Presentation Module in
CLIPS. The user is provided with the following options: (1) explain the prediction of a single ring,
(2) explain all eddy movement, or (3) quit the explanation menu. If the explanation of the prediction

20

Conversion of an Oceanographic Expert System to a C-Based Language

of either a single ring or all eddies is selected, the user is given the further choice of a rule-trace
explanation or a summary of the reasoning process. Depending on the type of explanation requested
by the user, the Explanation Driver asserts appropriate facts in the CLIPS working memory to
activate the appropriate rules of the Presentation Module. The templates for structuring the expla-
nation that were previously represented in C were put on the RHS of each rule of the Presentation
Module. The desired value slots in the template are filled by the variables whose values were bound
at the LHS of that rule. The Presentation Module then prints out the requested explanation, either
rule trace or summary, of the prediction process for the desired ring(s). The explanation rules are
defined in explain.clp.

The knowledge structure of the Explanation Component contains two templates: the rule-
fire-record template and the values-for-explanation template. Each ring at each time frame has one
rule-fire-record template fact associated with it. For every single rule firing, one values-
for-explanation template fact is asserted. These two template facts are linked by the indexing fields,
including the ring type, reference number, and time stamp. For example, a rule-fire-record template
fact with the following slot values

(rule-fire-record

(ringtype wcr)

(refno 1)

(time 0)

(rules-fired WCREstimateMotion WCRGetlnteraction))

can be translated to English as follows: the rules that fired to predict the movement of WCR 1 at
time stamp 0 are WCREstimateMotion and WCRGetInteraction. Then, the following values-
for-explanation template fact can be accessed to obtain appropriate values for explaining the status
of WCR 1 as the WCREstimateMotion rule fired:

(values-for-explanation

(rule-name WCREstimateMotion)

(ringtype wcr)

(refno 1)

(time 0)

(var-val varn vall var2 val2 ...

5.8 Final Output Component

This component was converted from OPS83 to C. It provides the user with options for storing
the final positions of the Gulf Stream north wall, the Gulf Stream south wall, and/or the eddies with
active status into external files with a name specified by the user. The Final Output Component
returns control to the main module if WATE is running in stand-alone mode. The User Options
Window then becomes active. The user is allowed to run the system again until he or she quits the
system from either the User Options Window or the command line.

21

22 Bridges and Chen

6.0 SYSTEM TESTING

WATE was tested for the adequacy of the predictions of eddy movement, its explanation
capability, and its reasoning process. The final results that were obtained from system testing are
considered sufficient to pass the requirements specified for input, output, and the user interface.

6.1 Testing Criteria

The criterion for passing each test case is that WATE should generate the same prediction at
each time step as the Expert System, given the same input. The explanation produced by WATE,
both rule trace and summary, should have the same content as the Expert System, given the same
input. All test cases were tested over a period of 28 days with a time step of 7 days except for the
explanation testing, which was run over a 14-day period.

6.2 Test Cases

WATE was tested against the same test data sets that were used to test the previous versions
of the oceanographic expert system. The test cases are described in Appendix B. The first 10 test
cases use the NRL DART (Data Assimilation Research and Transition program) data sets (Lybanon
1990). Files are named dartyyddd.gs or dartyyddd.eddy, where yy indicates the last two digits of the
year and ddd stands for the day number of that year. The DART GS files are used with the DART
Eddy files for the same time period. The last three test cases use artificial data constructed to
exercise all of the rules of the expert system (Bridges and Lybanon 1993). These test cases use the
files ugs.dat, wcr.dat, ccr.dat, and eddies.dat to test the explanation capability and the reasoning a

process of WATE. These artificial data files were designed to test the performance of the system
in each of the nine regions for each type of eddy. The locations and size of WCRs cause each of
the constraint rules for warm-core eddies to fire. Eddies were also included that should dissipate
during the prediction period, coalesce with the GS, and move from one region to another. The input
files, the region data file, and the parameter data file for all test cases were delivered in electronic
form.

6.3 Test Results

WATE passed all test cases successfully. The results, delivered in electronic form to NRL,
show that the old and new versions of WATE give identical results.

7.0 EVALUATION AND CONCLUSIONS
0

WATE was successfully converted from OPS83 to C and CLIPS. This conversion will facilitate
the incorporation of WATE into SAMAS 1.2, which will eventually be embedded in TESS(3). The
source code of WATE is fully commented with a straightforward layout. By modularizing the
system, the control structure of WATE is easier to understand and maintain. The user interface was
also improved by employing a window interface. The most valuable reconstruction was in the
Explanation Component in that it is implemented by a rule system. Since the information about the
reasoning process of the Eddy Component is asserted into working memory as a set of facts, instead
of recording activation of the agenda and the desired variable-value pairs by external C routines
each time a rule fired, the Explanation Component can be viewed as more independent of the Eddy

0

Conversion of an Oceanographic Expert System to a C-Based Language

Component. Furthermore, the explicit implementation of the Explanation Component makes it easier
to maintain and enhance (Bridges and Lybanon 1993). Overall, this project has made the Expert
System more readable, understandable, and easier to maintain, and has made the system portable
to the TESS environment.

8.0 ACKNOWLEDGMENTS

This work was sponsored by the Space' and Naval Warfare System Command, CDR D. Markham,
Program Manager, under Program Element Number 0603207N.

9.0 REFERENCES

Bridges, S. M. and M. Lybanon, "Adding Explanation Capability to a Knowledge-Based System:
A Case Study," Applications of Artificial Intelligence 1993 Conference on Knowledge-
Based System in Aerospace and Industry, April 13-15, 1993, Orlando, FL, SPIE Vol. 1963,
pp. 40-49.

Forgy, C. L., "The OPS83 User's Manual System Version 2.2," Production Systems Technologies,
Inc., Pittsburgh, PA, 1986.

Giarrantano, J. C., "CLIPS Manual and References Guide," NASA Lyndon B. Johnson Space
Center, Information Systems Directorate, Software Technology Branch, 1990.

Lybanon, M., "Oceanographic Expert System: Potential for TESS(3) Applications," Naval Research
Laboratory, Stennis Space Center, MS, NOARL Tech. Note 286, 1992.

Lybanon, M., "Oceanographic Expert System Validation Using GOAP Mesoscale Products and
Gulfcast/Dart Validation Test Data," Naval Research Laboratory, Stennis Space Center, MS,
NOARL Report 5, 1990.

Peckinpaugh, S. H., "Documentation for the Semi-Automated Mesoscale Analysis System 1.2,"
Naval Research Laboratory, Stennis Space Center, MS, in publication.

Thomason, M. G. and R. E. Blake, "Development of An Expert System for Interpretation of
Oceanographic Images," Naval Research Laboratory, Stennis Space Center, MS, NORDA
Report 148, 1986.

23

9

0

0

Appendix A

FORMAT OF INPUT FILES

FORMAT FOR INPUT FILE OF WCRs AND CCRs

The file contains one line for the total number of eddies, followed by one line for each eddy,
containing the following values:

latitude longitude radius wc-code src-code,

where wc-code is either "W" or "C," and src-code is either "EE" or "ES."

FORMAT FOR PARAMETER FILE

The parameter file is named parms.dat. The file contains a set of parameters for each region for
each type of eddy. The parameters for WCRs for all regions are given first, followed by parameters
for the CCRs for each region. For each region the WCR parameters have one line containing the
region number, followed by one line for each direction (1-16) containing the following values:

direction lat-fac-1 long-fac-1 lat-fac-2 long-fac-2,

where lat-fac-n is the latitude adjust factor for regime n, and long-fac-n is the longitude adjust
factor for regime n.

The CCR parameters have one line containing the region number followed by one line for
each direction (1-16) containing the following values:

direction h-1 h-2 f-d-2 h-3 f-d-3 h-4 f-d-4,

where h-n is the heading value for regime n, and f-d-n is the final direction for regime n.

FORMAT FOR REGION FILE

The input file for regions, regions.dat, contains the following values for each line:

region-name speed direction heading decay' min-rad decay2 ,

25

26 Bridges and Chen

where speed is in centimeters per second, heading is a compass heading, decay' is the decay value
without GS interaction, mn-rad is the minimum radius for no coalesce with GS, and decay2 is the
decay value with GS interaction. For WCR regions the values also contain break-point values, bkl
to bk3, that are used to compute the degree of GS interaction. For CCR regions, the values also
contain break-point values, bkl to bk4, that are used to determine the path of rings that have
encountered the GS and are in a looping motion.

0

Appendix B

TEST CASES

This appendix describes 13 test cases. The test data named dartxxxxx.gs and dartxxxxx.eddy
were used as pairs of UGS data files and eddy data files for each test case. There are 10 test cases
with a dart heading. The test data named ugs.dat was used as the UGS data file tested with the test
data named wcr.dat, ccr.dat, and eddies.dat, all of which form the other three test cases. The dart
test cases were adopted from Lybanon (1990). The rest of test cases were adopted from Bridges and
Lybanon (1993). The files described and 'the input files of parameters (parms.dat) and region data
(regions.dat) are available in electronic form in the directory testing in the file test.data.

dart85223..g
337
36.7647
36.8529
36.8529
36.8529
36.9412
36.9412
37.0294
37.0294
37.1176
37.1176
37.2059
37.2059
37.2941
37.2941
37.3824
37.3824
37.4706
37.4706
37.5588
37.6471
37.6471
37.7353
37.8235
37.9118
37.9118
38.0000
38.0882
38.0882

-74.0235 0
-74.0235 0
-73.9137 0
-73.8039 0
-73.8039 0
-73.6941 0
-73.6941 0
-73.5843 0
-73.5843 0
-73.4745 0
-73.4745 0
-73.3647 0
-73.3647 0
-73.2549 0
-73.2549 0
-73.1451 0
-73.1451 0
-73.0353 0
-73.0353 0
-73.0353 0
-72.9255 0
-72.9255 0
-72.9255 0
-72.9255 0
-72.8157 0
-72.8157 0
-72.8157 0
-72.7059 0

dart85223.gs
38.1765 -72.7059 0
38.2647 -72.7059 0
38.2647 -72.5961 0
38.3529 -72.5961 0
38.3529 -72.4863 0
38.4412 -72.4863 0
38.4412 -72.3765 0
38.5294 -72.3765 0
38.5294 -72.2667 0
38.6176 -72.1569 0
38.6176 -72.0471 0
38.6,176 -71.9373 0
38.6;176 -71.8275 0
38.5294 -71.8275 0
38.5294 -71.7177 0
38.4412 -71.7177 0
38.3529 -71.6078 0
38.2647 -71.4980 0
38.1765 -71.4980 0
38.1765 -71.3882 0
38.0882 -71.2784 0
38.0 882 -71.1686 0
38.0000 -71.1686 0
38.0000 -71.0588 0
37.9118 -71.0588 0
37.9118 -70.9490 0
37.9,118 -70.8392 0
37.9118 -70.7294 0
37.8235 -70.7294 0

27

dart85223.gs
37.8235 -70.6196 0
37.8235 -70.5098 0
37.9118 -70.5098 0
37.9118 -70.4000 0
37.9118 -70.2902 0
38.0000 -70.1804 0
38.0000 -70.0706 0
38.0882 -69.9608 0
38.0882 -69.8510 0
38.1765 -69.8510 0
38.1765 -69.7412 0
38.2647 -69.6314 0
38.2647 -69.5216 0
38.3529 -69.5216 0
38.3529 -69.4118 0
38.4412 -69.4118 0
38.4412 -69.3020 0
38.4412 -69.1922 0
38.5294 -69.1922 0
38.5294 -69.0824 0
38.6176 -68.9725 0
38.6176 -68.8627 0
38.7059 -68.8627 0
38.7059 -68.7529 0
38.7059 -68.6431 0
38.7941 -68.5333 0
38.7941 -68.4235 0
38.7941 -68.3137 0
38.7941 -68.2039 0

Bridges and Chen

dart85223.gs
38.7941 -68.0941 0
38.7941 -67.9843 0
38.7059 -67.9843 0
38.7059 -67.8745 0
38.6176 -67.8745 0
38.5294 -67.7647 0
38.4412 -67.7647 0
38.4412 -67.6549 0
38.3529 -67.6549 0
38.2647 -67.6549 0
38.2647 -67.5451 0
38.1765 -67.5451 0
38.0882 -67.5451 0
38.0882 -67.4353 0
38.0000 -67.4353 0
37.9118 -67.3255 0
37.8235 -67.2157 0
37.8235 -67.1059 0
37.7353 -67.1059 0
37.7353 -66.9961 0
3,7.7353 -66.8863 0
37.7353 -66.7765 0
37.7353 -66.6667 0
37.7353 -66.5569 0
37.8235 -66.4471 0
37.8235 -66.3373 0
37.9118 -66.2274 0
37.9118 -66.1176 0
38.0000 -66.0078 0
38.0000 -65.8980 0
38.0882 -65.7882 0
38.0882 -65.6784 0
38.1765 -65.6784 0
38.1765 -65.5686 0
38.2647 -65.4588 0
38.2647 -65.3490 0
38.3529 -65.3490 0
38.3529 -65.2392 0
38.3529 -65.1294 0
38.4412 -65.1294 0
38.4412 -65.0196 0
38.4412 -64.9098 0
38.5294 -64.8000 0
38.5294 -64.6902 0
38.6176 -64.5804 0
38.6176 -64.4706 0
38.6176 -64.3608 0
38.6176 -64.2510 0
38.6176 -64.1412 0
38.5294 -64.1412 0

dart85223.gs
38.5294 -64.0314 0
38.5294 -63.9216 0
38.4412 -63.9216 0
38.4412 -63.8118 0
38.3529 -63.8118 0
38.3529 -63.7020 0
38.2647 -63.7020 0
38.2647 -63.5922 0
38.1765 -63.5922 0
38.1765 -63.4824 0
38.1765 -63.3726 0
38.0882 -63.2627 0
38.0882 -63.1529 0
38.0882 -63.0431 0
38.0882 -62.9333 0
38.0882 -62.8235 0
38.0882 -62.7137 0
38.0882 -62.6039 0
38.0882 -62.4941 0
38.0882 -62.3843 0
38.0882 -62.2745 0
38.0882 -62.1647 0
38.0882 -62.0549 0
38.0882 -61.9451 0
38.0882 -61.8353 0
38.0882 -61.7255 0
38.0882 -61.6157 0
38.0882 -61.5059 0
38.0882 -61.3961 0
38.0882 -61.2863 0
38.0882 -61.1765 0
38.0882 -61.0667 0
38.1765 -61.0667 0
38.2647 -61.0667 0
38.3529 -61.0667 0
38.4412 -61.0667 0
38.5294 -61.0667 0
38.6176 -61.1765 0
38.7059 -61.1765 0
38.7941 -61.1765 0
38.7941 -61.2863 0
38.8824 -61.2863 0
38.9706 -61.3961 0
39.0588 -61.3961 0
39.0588 -61.5059 0
39.1471 -61.5059 0
39.2353 -61.6157 0
39.3235 -61.6157 0
39.4118 -61.7255 0
39.5000 -61.7255 0

dart85223.gs
39.5882 -61.7255 0
39.6765 -61.7255 0
39.7647 -61.7255 0
39.7647 -61.6157 0
39.8529 -61.6157 0
39.9412 -61.5059 0
39.9412 -61.3961 0
40.0294 -61.3961 0
40.0294 -61.2863 0
40.0294 -61.1765 0
40.1176 -61.1765 0
40.1176 -61.0667 0
40.2059 -60.9569 0
40.2059 -60.8471 0
40.2059 -60.7373 0
40.2059 -60.6274 0
40.2059 -60.5176 0
40.2059 -60.4078 0
40.2059 -60.2980 0
40.2059 -60.1882 0
40.1176 -60.1882 0
40.1176 -60.0784 0
40.1176 -59.9686 0
40.0294 -59.9686 0
40.0294 -59.8588 0
39.9412 -59.8588 0
39.9412 -59.7490 0
39.8529 -59.7490 0
39.8529 -59.6392 0
39.7647 -59.6392 0
39.7647 -59.5294 0
39.6765 -59.5294 0
39.5882 -59.4196 0
39.5882 -59.3098 0
39.5000 -59.3098 0
39.5000 -59.2000 0
39.4118 -59.2000 0
39.4118 -59.0902 0
39.4118 -58.9804 0
39.4118 -58.8706 0
39.4118 -58.7608 0
39.3235 -58.7608 0
39.3235 -58.6510 0
39.3235 -58.5412 0
39.3235 -58.4314 0
39.3235 -58.3216 0
39.3235 -58.2118 0
39.2353 -58.1020 0
39.2353 -57.9922 0
39.2353 -57.8824 0

0

9

.

-

28

Conversion of an Oceanographic Expert Systeni to a C-Based Language

dart85223.gs
39.2353 -57.7725 0
39.2353 -57.6627 0
39.2353 -57.5529 0
39.3235 -57.5529 0
39.3235 -57.4431 0
39.4118 -57.4431 0
39.4118 -57.3333 0
39.5000 -57.3333 0
39.5882 -57.3333 0
39.6765 -57.3333 0
39.6765 -57.4431 0
39.7647 -57.4431 0
39.8529 -57.5529 0
39.9412 -57.6627 0
40.0294 -57.6627 0
40.1176 -57.7725 0
40.2059 -57.8824 0
40.2059 -57.9922 0
40.2941 -57.9922 0
40.2941 -58.1020 0
40.3824 -58.1020 0
40.3824 -58.2118 0
40.4706 -58.2118 0
40.5588 -58.3216 0
40.5588 -58.4314 0
40.6471 -58.4314 0
40.7353 -58.4314 0
40.7353 -58.5412 0
40.8235 -58.5412 0
40.8235 -58.6510 0
40.9118 -58.6510 0
41.0000 -58.6510 0
41.0882 -58.6510 0
41.0882 -58.7608 0
41.1765 -58.7608 0
41.2647 -58.7608 0
41.3529 -58.7608 0
41.3529 -58.8706 0
41.4412 -58.8706 0
41.5294 -58.8706 0
41.6176 -58.7608 0
41.7059 -58.7608 0
41.7941 -58.6510 0
41.7941 -58.5412 0
41.8824 -58.5412 0
41.8824 -58.4314 0
41.9706 -58.3216 0
41.9706 -58.2118 0
41.9706 -58.1020 0
41.9706 -57.9922 0

dart85223 gs
41.9706 -57.8824 0
41.970k -57.7725 0
41.9706 -57.6627 0
41.9706 -57.5529 0
41.9704 -57.4431 0
41.8824 -57.4431 0
41.8824 -57.3333 0
41.7941 -57.2235 0
41.7059 -57.1137 0
41.6176 -57.0039 0
41.6176 -56.8941 0
41.5294 -56.8941 0
41.4412 -56.7843 0
41.3529 -56.7843 0
41.3529 -56.6745 0
41.2647 -56.6745 0
41.1765 -56.5647 0
41.0882 -56.4549 0
41.0000 -56.4549 0
40.9118 -56.3451 0
40.8235 -56.2353 0
40.7353 -56.2353 0
40.7353 -56.1255 0
40.6471 -56.1255 0
40.5588 -56.0157 0
40.4706 -56.0157 0
40.4706 -55.9059 0
40.3824 -55.9059 0
40.2941 -55.7961 0
40.2059 -55.7961 0
40.2059' -55.6863 0
40.1176 -55.6863 0
40.0294 -55.6863 0
39.9412. -55.5765 0
39.8529' -55.5765 0
39.8529' -55.4667 0
39.7647 -55.4667 0
39.6765, -55.3569 0
39.6765 -55.2471 0
39.5882' -55.2471 0
39.5882i -55.1373 0
39.5000 -55.0275 0
39.5000 -54.9176 0
39.4118 -54.8078 0
39.4118 -54.6980 0
39.4118' -54.5882 0
39.4118' -54.3686 0
39.4118; -54.2588 0
39.4118 -54.1490 0
39.4118 -54.0392 0
39.4118, -53.9294 0

dart85223.eddy

8
39.8 -66.9
39.4 -69.5
40.4 -64.2
41.0 -54.2
40.6 -62.4
35.3 -68.2
36.2 -60.7
37.0 -58.5

80.0 W Dl
75.0 W D2
90.0 W D3
70.0 W D4
80.0 W D8
80.0 C D5
85.0 C D6
70.0 C D7

29

0

0

0

Appendix C

TEST RESULTS

This appendix describes the test results of the 13 test cases from Lybanon (1990). The test
cases dartxxxxx.gs and dartxxxxx.eddy contributed to test results:

(1) ES - dartxxxxx generated by the original Expert System.

(2) wate - dartxxxxx generated by WATE 1.0.

Bridges (1993). The GS data file tested with test cases wcr.dat, ccr.dat, and eddies.dat was
ugs.dat, which together contributed test results:

(1) ES-wcr, ES-ccr, and ES-eddies generated by the original Expert System.

(2) wate-wcr, wate-ccr, and wate-eddies generated by WATE 1.0.

Please note that the difference between the sequence of eddies appeared in each result gener-
ated by the original Expert System and that generated by WATE was due to the different conflict
resolution selected by CLIPS and OPS83, i.e., the decision of which rule on the conflict set should
fire next. However, this will not affect the correctness of test results. For convenience, test results
generated by two systems are listed correspondingly. All of these test cases were run for a 28-day
period.

In addition, the validation of explanations generated by WATE was done by employing the
artificial test data set found in the files wcr.dat and ccr.dat, with ugs.dat as the UGS data.
This artificial eddy data forces all of the constraint rules to fire. Again, if two rings existed in the
same region, OPS83 may reason about one of them first, and CLIPS may reason about the other
first. Sample test results are delivered in electronic form in the directory testing in the file
test.results. The explanations generated by two systems were over a 14-day period. The test results
of the explanation component are delivered in electronic form in the directory testing in the files
result.ES (explanation by the original Expert System) aiid result.wate (explanation by WATE).

31

0

0

0

-

The source

A. C FILES

globals.h

explan.h

pvdummy.h

wate-interface.h

wate.c

initialize.c

eddies.c

explan.c

final-output.c

Appendix D

DESCRIPTION OF FILES CONTAINING SOURCE CODE

code is available in electronic form in the directory source.

Header file for the global variables used in WATE 1.0.

Defines constants and structures for menu choices for explanation.

Contains prototype declarations for the PV-Wave routines that will be
used for graphical displays. This file will be eliminated when the code is
integrated with the actual PV-Wave routines.

User interface object and function declarations.

Contains the main function of WATE and event callback functions for the
User Options Window if it is running in stand-alone mode.

Contains the following functions: InitGlobals, GetUserOpt, SetupCLIPS,
SetupPVWave, and SetupGS. The SetupCLIPS function logically contains
five functions, including InitializeCLlPS, LoadConstructs, ResetCLIPS,
ReadParms, and ieadEddies.

Contains the module of the Eddy Component, starto. Please note that the
sequence of the fields in the template definitions (defined in k-stru.clp)
DOES matter, since it influences the value obtained by the function
GetMFValue. Therefore, if the field ordering in the template definition is
changed, this file! may also need to be changed.

Contains functions definitions for the Explanation Driver Module of the
Explanation Component.

Prints the final status of north wall of the Gulf Stream, south wall of the
Gulf Stream, and all eddies to three external files. This is a translation of
the file FinalOutput.ops in OPS.

33

Bridges and Chen

pvdummy.c

readinput.c

regions.c

returns.c

wate-interface-stubs.c

wate-stubs.c

B. CLIPS FILES

ccrrules.clp

explain.clp

k-stru.clp

wcrrules.clp

Contains function definition stubs for the PV-Wave routines that will be
used for graphical displays. This file will be eliminated when the code is
integrated with the actual PV-Wave routines.

User-defined functions for reading values for templates, parms, and eddy
info.

Contains the following functions: TestReg. This function was in regions.ops.
The other function, In_GS, which was also in regions.ops, is now in returns.c,
since it has been changed to return some value back to CLIPS.

User-defined functions for returning values to CLIPS from external functions.

0

0

User interface object initialization functions.

Gives the CLIPS definition of user-defined C functions that can be called
from CLIPS.

0
Contains the rules for predicting the movement of cold-core eddies. Tem-
plates used in these rules are defined in k-stru.clp. Please note that this rule
file must physically reside in the directory you specify during the get-user-
option session. The start procedure in module eddies cycles through all
regions asserting goal with refno = 0 and ringtype = ccr. CCREstimateMotion
selects an eddy in the region to update if there is one, does initial estimates
of radius, and gets GS interaction info. User-defined functions used in
these rules are in returns.c.

These rules handle the explanation requests from the user.
01

Contains a deffacts structure and six deftemplates. Please note that the
sequence of the fields defined in templates will affect the values returned
by function call GetMFValue, which is called many times in the starto
routine found in eddies.c file.

0
Contains the rules used to predict the movement of warm-core eddies. The
templates used by these rules are in k-stru.clp. Please note that this rule file
must physically reside in the directory specified during the get-user-option
session. The start procedure in module eddies cycles through all regions
asserting goal with refno = 0 and ringtype = wcr. WCREstimateMotion
selects an eddy in the region to update if there is one, does initial estimates
of radius, and gets GS interaction info.

0

0

34
0

